Blow-up for a viscoelastic von Karman equation with strong damping and variable exponent source terms
نویسندگان
چکیده
Abstract In this article, we deal with a strongly damped von Karman equation variable exponent source and memory effects. We investigate blow-up results of solutions three levels initial energy such as non-positive energy, certain positive high energy. Furthermore, estimate not only the upper bound but also lower time.
منابع مشابه
Blow Up of Solutions for a Viscoelastic System with Damping and Source Terms in IRn
where m, r ≥ 2, and g,h, u0, u1, v0, and v1 are functions to be specified later. This type of problems arises naturally in the theory of viscoelasticity and describes the interaction of two scalar fields (see [1, 2]). The integral terms express the fact that the stress at any instant depends not only on the present value but on the entire past history of strains the material has undergone. In [...
متن کاملBlow-up of arbitrarily positive initial energy solutions for a viscoelastic wave system with nonlinear damping and source terms
*Correspondence: [email protected] School of Mathematical Sciences, Ocean University of China, Qingdao, P.R. China Abstract This work is concerned with the Dirichlet initial boundary problem for a semilinear viscoelastic wave system with nonlinear weak damping and source terms. For nonincreasing positive functions g and h, we show the finite time blow-up of some solutions whose initial data hav...
متن کاملBlow-up of Solutions to a Coupled Quasilinear Viscoelastic Wave System with Nonlinear Damping and Source
We study the blow-up of the solution to a quasilinear viscoelastic wave system coupled by nonlinear sources. The system is of homogeneous Dirichlet boundary condition. The nonlinear damping and source are added to the equations. We assume that the relaxation functions are non-negative non-increasing functions and the initial energy is negative. The competition relations among the nonlinear prin...
متن کاملBlow-up for a reaction-diffusion equation with variable coefficient
We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.
متن کاملExponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping
with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2021
ISSN: ['1687-2770', '1687-2762']
DOI: https://doi.org/10.1186/s13661-021-01537-2